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The Rheology of Linear and Long-chain
Branched Polymer Melts

Manfred H. Wagner

Summary: By generalising the Doi-Edwards tube model to the Molecular Stress
Function theory, the non-linear rheology of polymer melts can be described
quantitatively. The strain-hardening of linear polymer melts in extensional flows
can be accounted for by a strain energy function, which reflects the increase of strain
energy due to tube squeeze. In comparison to linear polymer melts, long-chain
branched polymer melts show enhanced strain-hardening. This is due to the fact that
while the backbone of the branched macromolecule is stretched by deformation, side
chains are compressed. It is demonstrated that the experimentally observed slope of
the elongational viscosity after inception of strain-hardening depends on the ratio 8
of total molar mass to backbone molar mass as predicted by the model. The steady-
state (plateau) value of the elongational viscosity depends on the maximum relative
stretch, f},,, which can be supported by chain segments and which represents the
maximum elastic energy storable in the polymeric system.
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Introduction

Constitutive equations describing the non-
linear rheological behavior of polymer
melts have been a subject of focus due to
their important role in providing a logical
picture of the molecular structure of the
polymer as well as their importance in
designing and optimizing polymer proces-
sing. Most of the current theoretical work
in rheology is devoted to the development
of precise constitutive equations with para-
meters that are in some way or other
obtainable through the microstructural
properties of polymer melts, and it is the
purpose of this paper to present a survey
of the development of a highly success-
ful class of microstructural integro-differ-
ential constitutive equations based on
the now classical tube model of Doi and
Edwards [1].
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The Tube Model

To reduce the intricacies of a many body
system, intermolecular interaction of con-
centrated systems of linear polymer chains
is modeled by the tube concept: The
mesh of constraints caused by surrounding
chains confines the macromolecular test
chain laterally to a tubelike region. Doi and
Edwards (DE) assumed that the diameter
a, of the tube is not changed even by large
non-linear deformations, or equivalently
that the tension in the deformed macro-
molecular chain remains constant and
equal to its equilibrium value [1]. The main
contribution to the extra stress tensor o (z)
is then given by the orientation of the tube
segments due to the flow. The resulting
constitutive equation is of the single
integral form,

o(t) = / m(t — ¢)Sky (¢)d! 1)

if the tube segments are assumed to align
independently of each other in the flow
field (the “Independent Alignment (IA)”
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approximation). The strain measure is
given by

u'n’
SE: = 5<u—,2> =58 )
o

where § is the second order orientation
tensor. The bracket denotes an average
over an isotropic distribution of unit vectors
u and can be expressed as a surface integral
over the unit sphere,

()o= %#[] sin 0,d6,dy, 3)

u' is the length of the deformed vector u’,
which is calculated from the affine defor-
mation hypothesis (with F,~' as the defor-
mation gradient tensor) as

u=F"'u 4)

In the DE model, stress results from
chain orientation only, and there is no
chain stretch. Consequently, the DE model
doesnot account for any strain hardening in
extensional flows (Fig. 1). It does, however,
predict the separability of time and strain
effects in the nonlinear stress relaxation
modulus, which is observed even for
polydisperse polymer melts over several
decades of relaxation time.

Tube Model with Chain Stretch

For monodisperse polymer melts, the Doi-
Edwards strain measures seemed to give an
acceptable description of material behavior
in step-shear experiments for times greater
than the equilibration time. For fast defor-
mations and for polydisperse linear and
branched polymer melts, on the other hand,
although time-deformation separability
often works over most or even the entire
(experimentally attainable) time range, the
measured stresses in shear and extensional
flows are often much higher than predicted
by the Doi-Edwards strain measure [1-4],
which is a signature of considerable chain
stretch.

In the Molecular Stress Function (MSF)
model of Wagner and coworkers [2,5-13],
tube stretch is caused by the “‘squeeze’ of
the surrounding polymer chains, leading to
a reduction of the tube diameter a from its
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equilibrium value a,. Taking into account
that the tube diameter a represents the
mean field of the surrounding chains and its
associated strain energy, it is assumed that
the tube diameter is independent of the
orientation of tube segments.

The stress is then given as

t
o(t) = —pl+ / m(t — ¢ )fSEs (¢, ) dl
“x
®)
where the molecular stress function f'is the
inverse of the relative tube diameter,

ft.0) =ao/a(t,() (6)

It is important to note that tube stretch
in Eq. (6) does not only depend on the
observation time ¢, but also on the strain
history, i.e. for time-dependent strain histo-
ries, tube stretch varies along the tube. The
dependence on ¢ and ¢ is dropped in the
following.

Note that while Sk} is related directly to
the deformation history via Eq. (4), no a
priori dynamics of the internal variable f'is
prescribed in the MSF model. Rather, £ is
assumed to be directly related to the strain
energy stored in the polymeric system, and
is determined as solution of an evolution
equation derived from an energy balance
argument [2].

Based on prior work of de Gennes [14],
and Marrucci et. al. [15,16], the molecular
stress function ffor linear melts is related to
a strain-energy function wy,s; of the form

WMSF
3,7 =D (7

Neglecting dissipative constraint release,
i.e. considering the hyper-elastic limit, the
power input of the stress tensor into the
polymer system is equal to the increase of
the strain energy by tube deformation [2].

f? is found as solution of the evolution

equation (with velocity gradient x and
plateau modulus GY)

1 dWMSF_K. (03
3kgT dt 535G,

=fAk:8)  (8)
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Figure 1.

Uniaxial (), equibiaxial (¢), and planar (., pp,) viscosities of a HDPE at T=150 °C. Viscosities are normalized
with respect to the zero-shear viscosity. Comparison of experimental data (symbols) to predictions of DE and
LMSF (zero parameter) models.
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Figure 2.

Uniaxial (), equibiaxial (j.¢), and planar (., pp,) viscosities of a HDPE melt. Viscosities are normalized with
respect to the zero-shear viscosity. Comparison of experiment to predictions of the MSF model with dissipative

i 2 —
constraint release. fy,,, = 49.
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to be

f2 _ e(lnu’)(] (9)
i.e. 2 is an exponential of the orientational
free energy 3kgT(Inu'),. 4 indicates the
material time derivative.

Predictions of the MSF model are in
excellent agreement with the onset of strain-
hardening in uniaxial, equibiaxial and planar
extension of polydisperse linear polymer
melts (the so-called LMSF model), as
exemplified in Fig. 1 [2].

Now dissipative constraint release (CR)
is introduced as a dissipative process [2],
which modifies the energy balance of tube
deformation, and leads to a strain-depen-
dent evolution equation for the molecular
stress function of the form
df?

dr

£2lee:s) - f%lcze

Constraint release is considered to be
the consequence of different convection
mechanisms for tube orientation and tube-
cross section, and for constant strain-rate
flows can be expressed as

CR=a,(f>*—1)*VD?:S
+a(f?-=1)*/|W-D: S (11)

with D and W being the rate of deformation
and rate of rotation tensor, respectively.
The non-linear material parameters verify
a; >0 and a, > 0. Note that in extensional
flows, constraint release depends only on
the parameter a;, while in simple shear
flow, both the parameters a; and a, are of
relevance. We restrict discussion here to
extensional deformations. The evolution
equation for the molecular stress function
of linear melts in extensional flows is given
by

(10)

2
% = éfz [Sll +mSy — (1 + m)S33.

—ay (fz — 1)
X \/Sn —+ m2522 + (1 =+ m)2533}(12)

where the parameter m (—12<m<1)
describes the type of extensional flow,
and ¢ is the largest extension rate. S;; are
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the components of the orientation tensor S.
At large strains, a maximum f? = f3 ,y is
reached and df?/dt = 0. Hence, the para-
meter a; can be expressed in terms of f3,,y
as

B 1
firax —1
13 .4x governs the steady-state value of the
viscosity in extensional flows, and corre-
sponds to the maximum of storable elastic
energy. It is the only non-linear material
parameter of the theory for describing
polymer melt rheology of linear polymers
inirrotational flows. The level of agreement
between experiments in different exten-
sional deformation modes and theory for a

linear polyethylene melt is demonstrated in
Fig. 2 [2].

ap

(13)

The MSF Model for Long-Chain
Branched Melts
The most simple model of a tube section of
a long-chain branched macromolecule con-
taining S entanglements consists of one
chain segment representing one entangle-
ment oriented in the direction of the tube
(the “backbone” of the macromolecule),
and one or more side chains representing
B—1 entanglements (Fig. 3). Note that a
side chain can contain more than one chain
segment, depending on the length of the
side chain relative to the entanglement
length. Thus, according to this model, chain
segments fall into two distinct categories:
either they belong to the backbone and are
stretched by deformation, or they do not
belong to the backbone and are compressed
by deformation [10].

When the tube is stretched, one segment
is extended, while fB—1 are compressed,
leading to a total strain energy of

WMSFil (,3—]) 1
wr VT (172)

(14)

The parameter $ has values > 1, with
B=1 for linear melts. For =2 (the so-
called QMSF model), excellent agreement
with experimental data of a long-chain
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Tube segment of a long-chain branched polymer molecule before and after deformation: one chain segment is
stretched, while side chain segments are compressed.

branched (radiation-crosslinked) polypro-
pylene melt is found (Fig. 4). Note that the
increase in elongational viscosity is steeper
for long-chain branched melts than for
linear melts.

Introducing again constraint release as a
non-linear dissipative process, which modi-
fies the energy balance of tube deformation,
leads to a strain-dependent evolution equa-
tion for the molecular stress function of the

form
arr _ Bf? , 1

Limiting discussion to extensional defor-
mations, the evolution equation for the
molecular stress function in constant strain-

rate extensional flows is then given by

ar? _
dar
2
E% {Sll +mSy — (1 + m)S33
1+ 7
2
-1
_fzfil \/Sll +m2Sy + (14 m)*S3;
MAX —

(16)

The enhanced slope of elongational vis-
cosity of long-chain branched polymer melts
in comparison to linear melts is caused by
the fact that a significant percentage of the
chain segments of a long-chain branched
molecule is compressed by elongational
flow (the ‘side chains”), and only part
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Uniaxial viscosity n, of a long-chain branched PP
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melt. Comparison of experimental data (symbols) to

predictions of the MSF model with =2 (QMSF model).

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.ms-journal.de



Macromol. Symp. 2006, 236, 219-227 |225

7 7
160 °C 160 °C
6 6 = -
@ > —
© ©
a a
2 Z s
m *w W
£ £
g g 0.038
0.078
4 015 T b 4 016 T h
0.35 0.34
0.69 0.72
3 i 3 .
-1 0 1 2 3 -1 0 1 2 3
a) log (t/s) b) log (t/s)
Figure 5.

Elongational viscosity data (symbols) of LDPE melts and predictions by MSF model. Parameters indicate
elongation rates in units s~ a) LDPE produced by tubular process (Tubular-o): =2 and f2,, =30; b) LDPE
produced by autoclave process (Autoclave-0): =4 and f},,, = 80.
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Figure 6.

Comparison of elongational viscosity data (symbols) of two branched PS melts to predictions (lines) of MSF
theory. Viscosities are normalized with respect to the zero-shear viscosity. m,(t) indicates the start-up zero-
shear viscosity. a) PS 80-0.6G-22: ®, ,, = 0.14, B =1.2; dashed line: f},,, — o0, solid line f7,,, = 25; b) PS 70-3.2G-
22: @y, = 0.5, f=12.0; dashed line: f},, — oo, solid line f;,,, = 80.
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of the chain segments is stretched (the
“backbone”). In the multi-chain segmental
MSF model described here, for one chain
segment stretched, g — 1 chain segments are
compressed. While for LDPE melts pro-
duced by the tubular polymerization pro-
cesses typically values of f=2 are found,
more highly branched autoclave LDPE
melts show values of =3 and even of
B=4 (Fig. 5) [10].

Comparison of MSF Model Predictions to
Elongational Rheology of Model Branched
Polystyrene Melts

It is difficult if not impossible to derive the
parameter § from the topology of randomly
branched LDPE; therefore g was so far
treated as a fit parameter (the only one in
the hyper-elastic limit). However, from an
analysis of the non-linear rheology of comb
shaped model polystyrene melts, it was
found that indeed, B as derived from the
topology of these model melts by assuming
stretch of the backbone chain and compres-
sion of the side chains, is in quantitative
agreement with experimental evidence
seen in uniaxial extension [11]. The para-
meter B can simply be obtained as ratio of
the number average molar mass of the
grafted polymer, M, to the number average
molar mass M, of the backbone, which
can be expressed in terms of the number
average mass fraction @, of grafted side
chains,

M, 1

ﬁ - Mn,bb - 1- (Dn,br

7)

For linear polymers, naturally =1 is
obtained from Eq. (17).

As exemplified in Fig. 6 [11], agreement
between predicted and observed slopes of
the elongational viscosity after inception
of strain-hardening is excellent for all
model branched polystyrene melts investi-
gated. Within the experimentally accessible
window of elongation rates, time-strain
separability of the measured elongational
viscosities is observed. Also, as far as a
maximum strain-hardening could be deter-
mined, the data are compatible with the
implicit assumption of the MSF model that

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

the material parameter f7 ,  is the same for
all relaxation times of the terminal zone of
the relaxation spectrum.

Conclusion

A survey of the most recent and most
successful constitutive equation in non-lin-
ear rheology shows the amount of progress
made in recent decades. The microstructural
MSF model shows excellent predictive capa-
bilities for modeling the non-linear exten-
sional and shear behavior (not discussed
here in detail) of both linear and long-chain
branched industrially important polymers.
The concept of a strain-dependent tube
diameter, which decreases with increasing
deformation, explains consistently the strain
hardening of linear as well as of long-chain
branched polymer melts. The steeper slope
of the elongational viscosity after inception
of strain-hardening for branched melts in
comparison to linear melts is due to the fact
that in branched melts only a fraction (“the
backbone”) of chain segments is stretched,
while side chains are compressed. Also,
long-chain branched polymer melts show
reversible or “K-BKZ” behavior in double-
step strain experiments [17], because dis-
sipative constraint release occurs only at
higher strains, in contrast to linear melts,
where dissipation starts already at smaller
strains.
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