
The Rheology of Linear and Long-chain

Branched Polymer Melts

Manfred H. Wagner

Summary: By generalising the Doi-Edwards tube model to the Molecular Stress

Function theory, the non-linear rheology of polymer melts can be described

quantitatively. The strain-hardening of linear polymer melts in extensional flows

can be accounted for by a strain energy function, which reflects the increase of strain

energy due to tube squeeze. In comparison to linear polymer melts, long-chain

branched polymer melts show enhanced strain-hardening. This is due to the fact that

while the backbone of the branched macromolecule is stretched by deformation, side

chains are compressed. It is demonstrated that the experimentally observed slope of

the elongational viscosity after inception of strain-hardening depends on the ratio b

of total molar mass to backbone molar mass as predicted by the model. The steady-

state (plateau) value of the elongational viscosity depends on the maximum relative

stretch, f2MAX , which can be supported by chain segments and which represents the

maximum elastic energy storable in the polymeric system.

Keywords: Doi-Edwards tube model; extensional viscosity; Molecular Stress Function (MSF)

model; strain energy; strain-dependent tube diameter

Introduction

Constitutive equations describing the non-

linear rheological behavior of polymer

melts have been a subject of focus due to

their important role in providing a logical

picture of the molecular structure of the

polymer as well as their importance in

designing and optimizing polymer proces-

sing. Most of the current theoretical work

in rheology is devoted to the development

of precise constitutive equations with para-

meters that are in some way or other

obtainable through the microstructural

properties of polymer melts, and it is the

purpose of this paper to present a survey

of the development of a highly success-

ful class of microstructural integro-differ-

ential constitutive equations based on

the now classical tube model of Doi and

Edwards [1].

The Tube Model

To reduce the intricacies of a many body

system, intermolecular interaction of con-

centrated systems of linear polymer chains

is modeled by the tube concept: The

mesh of constraints caused by surrounding

chains confines the macromolecular test

chain laterally to a tubelike region. Doi and

Edwards (DE) assumed that the diameter

a0 of the tube is not changed even by large

non-linear deformations, or equivalently

that the tension in the deformed macro-

molecular chain remains constant and

equal to its equilibrium value [1]. The main

contribution to the extra stress tensor s(t)

is then given by the orientation of the tube

segments due to the flow. The resulting

constitutive equation is of the single

integral form,

sðtÞ ¼
Z t

�1
mðt � t0ÞSIADEðt0Þdt0 (1)

if the tube segments are assumed to align

independently of each other in the flow

field (the ‘‘Independent Alignment (IA)’’
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approximation). The strain measure is

given by

SIA
DE � 5

u0u0

u02

� �
o

¼ 5S (2)

where S is the second order orientation

tensor. The bracket denotes an average

over an isotropic distribution of unit vectors

u and can be expressed as a surface integral

over the unit sphere,

hio�
1

4p

ZZ
�½ � sin uoduod’o (3)

u0 is the length of the deformed vector u(,
which is calculated from the affine defor-

mation hypothesis (with Ft
�1 as the defor-

mation gradient tensor) as

u0 ¼ F�1
t � u (4)

In the DE model, stress results from

chain orientation only, and there is no

chain stretch. Consequently, the DE model

doesnot account for any strain hardening in

extensional flows (Fig. 1). It does, however,

predict the separability of time and strain

effects in the nonlinear stress relaxation

modulus, which is observed even for

polydisperse polymer melts over several

decades of relaxation time.

Tube Model with Chain Stretch

For monodisperse polymer melts, the Doi-

Edwards strain measures seemed to give an

acceptable description of material behavior

in step-shear experiments for times greater

than the equilibration time. For fast defor-

mations and for polydisperse linear and

branched polymer melts, on the other hand,

although time-deformation separability

often works over most or even the entire

(experimentally attainable) time range, the

measured stresses in shear and extensional

flows are often much higher than predicted

by the Doi-Edwards strain measure [1–4],

which is a signature of considerable chain

stretch.

In the Molecular Stress Function (MSF)

model of Wagner and coworkers [2,5–13],

tube stretch is caused by the ‘‘squeeze’’ of

the surrounding polymer chains, leading to

a reduction of the tube diameter a from its

equilibrium value a0. Taking into account

that the tube diameter a represents the

mean field of the surrounding chains and its

associated strain energy, it is assumed that

the tube diameter is independent of the

orientation of tube segments.

The stress is then given as

sðtÞ ¼ �pIþ
Z t

�1
mðt � t0Þf 2SIADEðt; t0Þdt0

(5)

where the molecular stress function f is the

inverse of the relative tube diameter,

f ðt; t0Þ ¼ ao=aðt; t0Þ (6)

It is important to note that tube stretch

in Eq. (6) does not only depend on the

observation time t, but also on the strain

history, i.e. for time-dependent strain histo-

ries, tube stretch varies along the tube. The

dependence on t and t0 is dropped in the

following.

Note that while SIADE is related directly to

the deformation history via Eq. (4), no a

priori dynamics of the internal variable f is

prescribed in the MSF model. Rather, f2 is

assumed to be directly related to the strain

energy stored in the polymeric system, and

is determined as solution of an evolution

equation derived from an energy balance

argument [2].

Based on prior work of de Gennes [14],

and Marrucci et. al. [15,16], the molecular

stress function f for linear melts is related to

a strain-energy function wMSF of the form

wMSF

3kBT
¼ ðf 2 � 1Þ (7)

Neglecting dissipative constraint release,

i.e. considering the hyper-elastic limit, the

power input of the stress tensor into the

polymer system is equal to the increase of

the strain energy by tube deformation [2].

f 2 is found as solution of the evolution

equation (with velocity gradient j and

plateau modulus G0
N)

1

3kBT

dwMSF

dt
¼ k :

s

5Go
N

¼ f 2ðk : SÞ (8)
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Figure 1.

Uniaxial (mu), equibiaxial (me), and planar (mp1, mp2) viscosities of a HDPE at T¼ 150 8C. Viscosities are normalized

with respect to the zero-shear viscosity. Comparison of experimental data (symbols) to predictions of DE and

LMSF (zero parameter) models.
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Figure 2.

Uniaxial (mu), equibiaxial (me), and planar (mp1, mp2) viscosities of a HDPE melt. Viscosities are normalized with

respect to the zero-shear viscosity. Comparison of experiment to predictions of the MSF model with dissipative

constraint release. f2MAX ¼ 49.
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to be

f 2 ¼ e ln u0h i0 (9)

i.e. f 2 is an exponential of the orientational

free energy 3kBT ln u0h i0. d
dt indicates the

material time derivative.

Predictions of the MSF model are in

excellent agreement with the onset of strain-

hardening in uniaxial, equibiaxial and planar

extension of polydisperse linear polymer

melts (the so-called LMSF model), as

exemplified in Fig. 1 [2].

Now dissipative constraint release (CR)

is introduced as a dissipative process [2],

which modifies the energy balance of tube

deformation, and leads to a strain-depen-

dent evolution equation for the molecular

stress function of the form

df 2

dt
¼ f 2 ðk : SÞ � 1

f 2 � 1
CR

� �
(10)

Constraint release is considered to be

the consequence of different convection

mechanisms for tube orientation and tube-

cross section, and for constant strain-rate

flows can be expressed as

CR ¼ a1ðf 2 � 1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 : S

p

þ a2ðf 2 � 1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W �D : Sj j

p
(11)

withD andW being the rate of deformation

and rate of rotation tensor, respectively.

The non-linear material parameters verify

a1� 0 and a2� 0. Note that in extensional

flows, constraint release depends only on

the parameter a1, while in simple shear

flow, both the parameters a1 and a2 are of

relevance. We restrict discussion here to

extensional deformations. The evolution

equation for the molecular stress function

of linear melts in extensional flows is given

by

df 2

dt
¼ _"f 2

h
S11 þmS22 � ð1þmÞS33:

� a1ðf 2 � 1Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S11 þm2S22 þ ð1þmÞ2S33

q i
ð12Þ

where the parameter m (�1/2�m� 1)

describes the type of extensional flow,

and _" is the largest extension rate. Sii are

the components of the orientation tensor S.

At large strains, a maximum f 2 ¼ f 2MAX is

reached and df 2=dt ¼ 0. Hence, the para-

meter a1 can be expressed in terms of f 2MAX

as

a1 ¼ 1

f 2MAX � 1
(13)

f 2MAX governs the steady-state value of the

viscosity in extensional flows, and corre-

sponds to the maximum of storable elastic

energy. It is the only non-linear material

parameter of the theory for describing

polymer melt rheology of linear polymers

in irrotational flows. The level of agreement

between experiments in different exten-

sional deformation modes and theory for a

linear polyethylene melt is demonstrated in

Fig. 2 [2].

The MSF Model for Long-Chain

Branched Melts

The most simple model of a tube section of

a long-chain branched macromolecule con-

taining b entanglements consists of one

chain segment representing one entangle-

ment oriented in the direction of the tube

(the ‘‘backbone’’ of the macromolecule),

and one or more side chains representing

b� 1 entanglements (Fig. 3). Note that a

side chain can contain more than one chain

segment, depending on the length of the

side chain relative to the entanglement

length. Thus, according to this model, chain

segments fall into two distinct categories:

either they belong to the backbone and are

stretched by deformation, or they do not

belong to the backbone and are compressed

by deformation [10].

When the tube is stretched, one segment

is extended, while b� 1 are compressed,

leading to a total strain energy of

wMSF

3kT
¼ 1

b
ðf 2 � 1Þ þ ðb� 1Þ

b
1� 1

f 2

� �

(14)

The parameter b has values b� 1, with

b¼ 1 for linear melts. For b¼ 2 (the so-

called QMSF model), excellent agreement

with experimental data of a long-chain
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branched (radiation-crosslinked) polypro-

pylene melt is found (Fig. 4). Note that the

increase in elongational viscosity is steeper

for long-chain branched melts than for

linear melts.

Introducing again constraint release as a

non-linear dissipative process, which modi-

fies the energy balance of tube deformation,

leads to a strain-dependent evolution equa-

tion for the molecular stress function of the

form

df 2

dt
¼ bf 2

1þ b�1
f 4

ðk : SÞ � 1

f 2 � 1
CR

� �
(15)

Limiting discussion to extensional defor-

mations, the evolution equation for the

molecular stress function in constant strain-

rate extensional flows is then given by

df 2

dt
¼

_"
bf 2

1þ b� 1

f 4

h
S11 þmS22 � ð1þmÞS33

� f 2 � 1

f 2MAX � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S11 þm2S22 þ ð1þmÞ2S33

q i

(16)

The enhanced slope of elongational vis-

cosity of long-chain branched polymer melts

in comparison to linear melts is caused by

the fact that a significant percentage of the

chain segments of a long-chain branched

molecule is compressed by elongational

flow (the ‘‘side chains’’), and only part
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Figure 4.

Uniaxial viscosity hu of a long-chain branched PP melt. Comparison of experimental data (symbols) to

predictions of the MSF model with b¼ 2 (QMSF model).

Figure 3.

Tube segment of a long-chain branched polymer molecule before and after deformation: one chain segment is

stretched, while side chain segments are compressed.
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Figure 5.

Elongational viscosity data (symbols) of LDPE melts and predictions by MSF model. Parameters indicate

elongation rates in units s�1: a) LDPE produced by tubular process (Tubular-o): b¼ 2 and f2MAX ¼ 30; b) LDPE

produced by autoclave process (Autoclave-O): b¼ 4 and f2MAX ¼ 80.

Figure 6.

Comparison of elongational viscosity data (symbols) of two branched PS melts to predictions (lines) of MSF

theory. Viscosities are normalized with respect to the zero-shear viscosity. h0(t) indicates the start-up zero-

shear viscosity. a) PS 80-0.6G-22:Fn,br¼ 0.14, b¼ 1.2; dashed line: f2MAX !1, solid line f2MAX ¼ 25; b) PS 70-3.2G-

22: Fn,br¼ 0.5, b¼ 2.0; dashed line: f2MAX !1, solid line f2MAX ¼ 80.
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of the chain segments is stretched (the

‘‘backbone’’). In the multi-chain segmental

MSF model described here, for one chain

segment stretched, b� 1 chain segments are

compressed. While for LDPE melts pro-

duced by the tubular polymerization pro-

cesses typically values of b¼ 2 are found,

more highly branched autoclave LDPE

melts show values of b¼ 3 and even of

b¼ 4 (Fig. 5) [10].

Comparison of MSF Model Predictions to

Elongational Rheology of Model Branched

Polystyrene Melts

It is difficult if not impossible to derive the

parameter b from the topology of randomly

branched LDPE; therefore b was so far

treated as a fit parameter (the only one in

the hyper-elastic limit). However, from an

analysis of the non-linear rheology of comb

shaped model polystyrene melts, it was

found that indeed, b as derived from the

topology of these model melts by assuming

stretch of the backbone chain and compres-

sion of the side chains, is in quantitative

agreement with experimental evidence

seen in uniaxial extension [11]. The para-

meter b can simply be obtained as ratio of

the number average molar mass of the

grafted polymer,Mn, to the number average

molar mass Mn,bb of the backbone, which

can be expressed in terms of the number

average mass fraction Fn,br of grafted side

chains,

b ¼ Mn

Mn;bb
¼ 1

1�Fn;br
(17)

For linear polymers, naturally b¼ 1 is

obtained from Eq. (17).

As exemplified in Fig. 6 [11], agreement

between predicted and observed slopes of

the elongational viscosity after inception

of strain-hardening is excellent for all

model branched polystyrene melts investi-

gated. Within the experimentally accessible

window of elongation rates, time-strain

separability of the measured elongational

viscosities is observed. Also, as far as a

maximum strain-hardening could be deter-

mined, the data are compatible with the

implicit assumption of the MSF model that

the material parameter f 2MAX is the same for

all relaxation times of the terminal zone of

the relaxation spectrum.

Conclusion

A survey of the most recent and most

successful constitutive equation in non-lin-

ear rheology shows the amount of progress

made in recent decades. Themicrostructural

MSFmodel shows excellent predictive capa-

bilities for modeling the non-linear exten-

sional and shear behavior (not discussed

here in detail) of both linear and long-chain

branched industrially important polymers.

The concept of a strain-dependent tube

diameter, which decreases with increasing

deformation, explains consistently the strain

hardening of linear as well as of long-chain

branched polymer melts. The steeper slope

of the elongational viscosity after inception

of strain-hardening for branched melts in

comparison to linear melts is due to the fact

that in branched melts only a fraction (‘‘the

backbone’’) of chain segments is stretched,

while side chains are compressed. Also,

long-chain branched polymer melts show

reversible or ‘‘K-BKZ’’ behavior in double-

step strain experiments [17], because dis-

sipative constraint release occurs only at

higher strains, in contrast to linear melts,

where dissipation starts already at smaller

strains.
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